Predictive Analysis of Diagnosed
Diabetes Prevalence: Insights from the
Center for Disease Control's Data

Issues

Diabetes is becoming more common, and we need to understand why. We know that being less
active and gaining weight can lead to diabetes, but there might be more to the story. Community
factors, like access to parks or health education, could also play a role.

Using regression modeling, we're trying to see how all these factors connect. But it's not just
about drawing lines on a graph. We need to make sure our model is reliable and that our data
makes sense. For example, if two factors, like inactivity and obesity, always go hand in hand,
our model might get confused. And, we want to make sure our predictions follow a
common-sense pattern.

With these challenges in mind, our study seeks answers to the following questions:

e How significantly do physical inactivity and obesity contribute to diabetes rates across
different counties?

e Are there underlying community factors, as represented by the Social Vulnerability
Index, that play a role in determining these rates?

e Can we refine our regression model to better predict diabetes prevalence, navigating
issues like multicollinearity and non-normal residuals?

e Will introducing more complex modeling techniques provide a better fit for our data?

Findings

e Significant Predictors: Both physical inactivity and obesity emerged as key predictors for
diabetes prevalence across counties, reaffirming the globally accepted view that these
factors substantially contribute to diabetes risk.



Interrelationship of Predictors: There's a moderate correlation of approximately 0.473
between physical inactivity and obesity, indicating that counties with higher inactivity
rates also tend to have higher obesity rates.

Model Refinement & Predictive Power: Addressing various issues in our initial model,
such as multicollinearity and outliers, improved our model's predictive accuracy, but the
R-Squared value reduced from 0.42 to 0.30.

Polynomial Regression's Limited Enhancement: The increase in complexity, the
polynomial regression model's R-Squared of 0.53 was significantly higher than the
refined linear model's 0.30, suggesting that adding complexity results in better
predictions.

Implications for Interventions: Our findings suggest that to reduce diabetes rates, efforts
should focus on addressing physical inactivity and obesity. Tailored strategies based on
community vulnerability might also yield better outcomes.

Discussion

Importance of Physical Activity: The data highlights the critical role of physical activity in
public health. Encouraging physical activity could not only reduce obesity rates but also
the prevalence of diabetes. Public health initiatives might focus on creating more
accessible recreational spaces or promoting community-based physical activity
programs.

Interventions Targeting Obesity: With the strong connection between obesity and
diabetes, interventions that target weight management could be instrumental. This could
include nutritional education, promoting healthy eating habits, or even offering weight
management programs at community health centers.

Future Research Directions: While the current analysis provides valuable insights, future
research could delve deeper into the reasons behind varying SVI scores across counties
and how these intricacies influence health outcomes. Furthermore, considering other
potential predictors or confounding factors might enhance the model's predictive
capability.

Limitations: Our model's R*2 value of 0.429 and polynomial regression being 0.53
suggests that there's still a significant portion of variance in the diabetes prevalence that
remains unexplained. There might be other unconsidered factors or complex interactions



influencing the prevalence rates. Also, the nature of the data, being observational,
means we can identify correlations but cannot infer causations definitively.

Appendix A: Method

Data Collection and Preprocessing:

e Data Sources: The primary data for this study was extracted from the
DiabetesAtlasData.csv file and the cdc-diabetes-2018.xIsx Excel spreadsheet, which
contained sheets for both Inactivity and Obesity.

e Merging the Datasets: The datasets from the two sheets of the Excel file (Inactivity and
Obesity) were first merged based on common columns (FIPS and FIPDS). This merged
dataset was then combined with the DiabetesAtlasData.csv dataset using the
County_FIPS column. Redundant columns, such as YEAR_y, COUNTY_y, STATE y,
FIPDS, and FIPS, were removed for clarity.

e Data Cleaning: To ensure data integrity, the 'Overall SVI' column was converted to a
numeric data type, and any conversion errors were handled gracefully.

Exploratory Data Analysis:
e Correlation Analysis: A heatmap was created to visually inspect the correlations between
the independent variables. This allowed for the identification of potential multicollinearity
issues, which could affect the reliability of regression outcomes.



Correlation Matrix of Independent Variables
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Model Development:
e |Initial Linear Regression Model: A linear regression model was built using the
statsmodels library. This model employed 'Overall SVI', '% INACTIVE', and '% OBESE'
as predictor variables and 'Diagnosed Diabetes Percentage' as the response variable.

Checking Regression Assumptions: Several diagnostic plots and tests were employed to
ensure the model adhered to the fundamental assumptions of linear regression:
e Linearity: A residuals vs. fitted values plot was used to confirm the linearity
assumption.
e Homoscedasticity: The residuals vs. fitted values plot showed a slight funnel
shape, indicating potential non-constant variances (heteroscedasticity).
e Normality: The Q-Q plot and Shapiro-Wilk test were utilized to check the
normality of residuals.



e Independence: The Durbin-Watson statistic helped in detecting autocorrelation in
the residuals.

e Multicollinearity: The Variance Inflation Factor (VIF) was computed for each
predictor to check for multicollinearity.

Addressing Assumptions and Enhancing the Model:

e Addressing Multicollinearity: The '% OBESE' variable was dropped due to its high VIF
value.

e Transformation & Outlier Handling: The response variable was log-transformed to
address potential non-linearity. Additionally, outliers in the predictor variables were
identified and removed using the IQR method.

e Polynomial Regression: To capture potential non-linear relationships in the dataset,
polynomial features were introduced. A regression model was then developed using
these polynomial features against the log-transformed response variable.

Appendix B: Results

Our analysis began with an exploration of the relationships between community vulnerability,
physical inactivity, obesity, and diagnosed diabetes percentages. Using the Center for Disease
Control data, we first visualized a correlation matrix to understand the linear relationship
between the predictor variables.

These correlation plots in the previous section pointed to a considerable relationship between
physical inactivity and obesity, raising concerns of potential multicollinearity.

The initial regression model, which utilized all three predictor variables, yielded an R-Squared
of approximately 42%. This meant that our predictors explained 42% of the variance in the
diagnosed diabetes percentage.

OLS Regression Results

Dep. Variable:  Diagnosed Diabetes Percentage R-squared: 0.427
Model: OLS Adj. R-squared: 0.422

Method: Least Squares F-statistic: 86.86

Date: Sun, 08 Oct 2023 Prob (F-statistic): 4.99e-42

Time: 16:29:12 Log-Likelihood: -291.14



No. Observations: 354 AIC: 590.3

Df Residuals: 350 BIC: 605.8
Df Model: 3
Covariance Type: nonrobust

coef stderr t P>tf [0.025 0.975]

const 1.8362 0.526 3.493 0.001 0.802 2.870
Overall SVI  0.7251  0.100 7.248 0.000 0.528 0.922
% INACTIVE 0.2121 0.022 9.712  0.000 0.169 0.255
% OBESE 0.0965 0.033 2.965 0.003 0.032 0.161

Upon further investigation of the regression assumptions, certain discrepancies were identified:
e The residuals vs. fitted values plot showed a slight funnel shape, indicating potential
non-constant variances.

Residuals vs. Fitted values
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e The Q-Q plot suggested some deviation from normality, especially at the tails.



Q-Q Plot of Residuals
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e The variance inflation factor (VIF) values for some of the predictors, particularly obesity
and inactivity, surpassed the commonly used threshold of 10, signaling high
multicollinearity.

Durbin-Watson value: 0.7216769922099032
Shapiro-Wilk p-value: 2.6775203878059983e-05

Variable VIF
0 Overall SVI 4.261105
1 % INACTIVE 120.683686
2 % OBESE 118.975716

Durbin-Watson value: 0.7216769922099032
e The Durbin-Watson statistic tests for autocorrelation in the residuals from a statistical
regression analysis. The value can range from 0 to 4. A value close to 2 suggests no



autocorrelation, values < 2 suggest positive autocorrelation, and values > 2 indicate
negative autocorrelation.

Shapiro-Wilk p-value: 2.6775203878059983e-05
e The p-value here is significantly less than 0.05 (essentially very close to 0), suggesting
that the residuals from the regression model are not normally distributed. This is another
violation of a key assumption of linear regression.

Variance Inflation Factor (VIF)

e VIF is used to detect multicollinearity in regression analyses. A VIF value of 1 indicates
no multicollinearity, values between 1 and 5 are generally considered acceptable, and
values greater than 5-10 indicate high multicollinearity.

e For the predictors:

e Overall SVI: VIF = 4.261105. This suggests that the 'Overall SVI' variable has
moderate multicollinearity, but it's still within an acceptable range.

e % INACTIVE: VIF = 120.683686. This is a very high VIF value, indicating severe
multicollinearity.

e % OBESE: VIF = 118.975716. This value also indicates severe multicollinearity.

e The high VIF values for '% INACTIVE' and '% OBESE' suggest that these two predictors
are highly correlated with each other, which can impact the stability and interpretability of
their respective regression coefficients.

Addressing the multicollinearity issue, we excluded the '% OBESE' variable. To combat the
non-normal distribution of residuals and potential outliers, a logarithmic transformation was
applied to the dependent variable, and outliers were removed based on the IQR method.

The refined regression model, after these adjustments, yielded an R-Squared of 0.30, signifying
an improved fit and predictive accuracy. Further enhancement was sought through polynomial
regression. By adding polynomial features and interactions between the predictors, we aimed to
capture any non-linear relationships in the data. This polynomial regression model with a
log-transformed dependent variable, however, achieved an R-Squared of 0.53, which provide a
significantly better fit than the refined linear model's R-Squared

of 0.30

OLS Regression Results
Dep. Variable: Diagnosed Diabetes Percentage R-squared: 0.532
Model: OLS Ad|. R-squared: 0.506
Method: Least Squares F-statistic: 19.99
Date: Sun, 08 Oct 2023 Prob (F-statistic): 3.30e-44

Time: 16:40:20 Log-Likelihood: 477.09



No. Observations: 354 AIC: -914.2

Df Residuals: 334 BIC: -836.8
Df Model: 19
Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]

const 5.1664 4.059 1273 0.204 -2.818 13.151
Overall SVI 0.8775 2635 0.333 0.739 -4.305 6.060
% INACTIVE -0.5958 0.506 -1.177 0.240 -1.592 0.400
% OBESE -0.3185 0487 -0.655 0.513 -1.276 0.639
Overall SVI*2 20329 1.159 1.754 0.080 -0.247 4.313
Overall SVI % INACTIVE 0.2490 0.283 0.878 0.380 -0.309 0.807
Overall SVI % OBESE -0.4075 0.369 -1.106 0.270 -1.133 0.318
% INACTIVE*2 0.0423 0.034 1.240 0.216 -0.025 0.109
% INACTIVE % OBESE -0.0023 0.086 -0.027 0.979 -0.171 0.167
% OBESE”2 0.0337 0.034 0992 0322 -0.033 0.101
Overall SVI*3 -0.1031  0.177 -0.583 0.560 -0.451 0.245
Overall SVI"2 % INACTIVE 0.0827 0.037 2217 0.027 0.009 0.156
Overall SVI*2 % OBESE -0.1675 0.068 -2.449 0.015 -0.302 -0.033
Overall SVI % INACTIVE~2 0.0106 0.006 1.860 0.064 -0.001 0.022
Overall SVI % INACTIVE % OBESE -0.0341 0.017 -1.998 0.047 -0.068 -0.001
Overall SVI % OBESE”"2 0.0292 0.015 1.992 0.047 0.000 0.058
% INACTIVEA3 -0.0013 0.000 -2.857 0.005 -0.002 -0.000
% INACTIVE*2 % OBESE 0.0006 0.002 0.299 0.765 -0.003 0.004
% INACTIVE % OBESE"2 -1.102e-05 0.004 -0.003 0.998 -0.007 0.007
% OBESE?3 -0.0010  0.001 -0.712 0477 -0.004 0.002

Appendix C: Code

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import statsmodels.api as sm

from statsmodels.stats.outliers_influence import variance inflation_factor
from scipy.stats import shapiro



from sklearn.preprocessing import PolynomialFeatures

# 1. Loading data and merging

diabetes_data = pd.read_csv("DiabetesAtlasData.csv")

cdc_data = pd.read_excel("cdc-diabetes-2018.xlIsx", sheet_name=None)

inactivity_data = cdc_data['Inactivity']

obesity data = cdc_data['Obesity']

merged_data = pd.merge(diabetes_data, inactivity_data, how='"inner', left_on='County_FIPS',
right_on='FIPDS')

final_merged_data = pd.merge(merged_data, obesity_data, how='inner'", left_on='County_FIPS',
right_on="FIPS')

final_merged_data = final_merged_data.drop(columns=["YEAR y', 'COUNTY _y', 'STATE_ V',
'FIPDS', 'FIPS')

final_merged_data = final_merged_data.rename(columns={"YEAR_x": 'YEAR', 'COUNTY_x":
'COUNTY", 'STATE_x": 'STATE"})

# 2. Extract independent and dependent variables
X = final_merged_data[['Overall SVI', '% INACTIVE', '% OBESE"]
X['Overall SVI'T = pd.to_numeric(X['Overall SVI'], errors='coerce') # Convert to numeric

# Displaying the correlation heatmap for independent variables

correlation_matrix = X.corr()

plt.figure(figsize=(8, 6))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1,
square=True, linewidths=0.5)

plt.title('Correlation Matrix of Independent Variables')

plt.show()

# 3. OLS Regression Model

y = final_merged_data['Diagnosed Diabetes Percentage']
X_const = sm.add_constant(X)

model = sm.OLS(y, X_const).fit()

print(model.summary())

# 4. Checking Assumptions for OLS Regression Model
# Residuals
residuals = y - model.predict(X_const)

# Linearity: Residuals vs. Fitted values plot
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)



plt.scatter(model.predict(X_const), residuals, alpha=0.6)
plt.axhline(y=0, color="r", linestyle="--")

plt.title('Residuals vs. Fitted values')

plt.xlabel('Fitted values')

plt.ylabel('Residuals')

# Normality of Residuals: Q-Q plot

plt.subplot(1, 2, 2)

sm.qgplot(residuals, line='45', fit=True, ax=plt.gca())
plt.title('Q-Q Plot of Residuals')

plt.tight_layout()

plt.show()

# Independence: Durbin-Watson test (value close to 2 is good)
durbin_watson_value = sm.stats.durbin_watson(residuals)
print(f"Durbin-Watson value: {durbin_watson_value}")

# Multicollinearity: Variance Inflation Factor (VIF > 10 indicates multicollinearity)
vif = pd.DataFrame()

vif["Variable"] = X.columns

vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
print(vif)

# Normality of Residuals: Shapiro-Wilk test (p-value < 0.05 indicates non-normality)
shapiro_test_stat, shapiro_p_value = shapiro(residuals)
print(f"Shapiro-Wilk p-value: {shapiro_p_value}")

# 5. Polynomial Regression and Data Transformation

poly = PolynomialFeatures(degree=3, include_bias=False)

X_poly = poly.fit_transform(X)

X_poly_df = pd.DataFrame(X_poly, columns=poly.get feature_names_out(X.columns))
y_log_transformed = np.log1p(y)

X _const_poly = sm.add_constant(X_poly_df)

model_poly log = sm.OLS(y_log_transformed, X_const_poly).fit()
print(model_poly_log.summary())






